Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels.
نویسندگان
چکیده
Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.
منابع مشابه
Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels.
Stress-dependent regulation of cardiac action potential duration is mediated by the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. It is accompanied by an increased magnitude of the slow outward potassium ion current, I(Ks). KCNQ1 and KCNE1 subunits coassemble to form the I(Ks) channel. Mutations in either subunit cause long QT syndrome, an inherited cardiac arrhythmia ...
متن کاملElectroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain
Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...
متن کاملChanges in expression of klotho affect physiological processes, diseases, and cancer
Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...
متن کاملExercise preconditioning: review
It is estimated that by 2035, more than 130 million adults will suffer from various types of cardiovascular diseases. Therefore, it is very important to know the pathogens of cardiac diseases and investigate new treatments. Also, despite continuous progress in diagnosis, patient education, and risk factor management, myocardial infarction (MI) remains one of the most common causes of morbidity,...
متن کاملRepolarization Recipes for Atrial Fibrillation
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, represents a major health burden to people and health care systems within the Western world (1). Given its increasing prevalence with age, coupled with the aging population, the number of Americans affected is expected to surge from approximately 2.3 million in the year 2000 to nearly 16 million by 2050 (2). Until recently,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 116 1 شماره
صفحات -
تاریخ انتشار 2015